Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Tuned Silencer Using Adaptive Variable Volume Resonator

2008-04-14
2008-01-0896
In this study, an adaptive control mechanism is proposed to design a silencer applying variable volume resonator concept. Transfer matrix method is used to calculate the transmission loss and evaluate acoustic performance of the proposed mechanism. Effects of damping factor, area ratio of expansion chambers are examined first for a fixed double chamber resonator. Then a two-dimensional search scheme is developed to find optimal piston position that achieves maximum transmission loss with minimal effort. This study shows that the proposed adaptive silencer can efficiently attenuate noise when comparing with a conventional fixed resonator.
Journal Article

Turbocharger Control-Oriented Modeling: Twin-Entry Turbine Issues and Possible Solutions

2015-09-06
2015-24-2427
The paper presents possible solutions for developing fast and reliable turbocharger models, to be used mainly for control applications. This issue is of particular interest today for SI engines since, due to the search for consistent CO2 reduction, extreme downsizing concepts require highly boosted air charge solutions to compensate for power and torque de-rating. For engines presenting at least four in-line cylinders, twin-entry turbines offer the ability of maximizing the overall energy conversion efficiency, and therefore such solutions are actually widely adopted. This work presents a critical review of the most promising (and recent) modeling approaches for automotive turbochargers, highlighting the main open issues especially in the field of turbine models, and proposing possible improvements.
Technical Paper

Two-Zone Heat Release Analysis of Combustion Data and Calibration of Heat Transfer Correlation in an I. C. Engine

1999-03-01
1999-01-0218
Typically, the combustion analysis for S.I. engines is limited to the determination of the apparent heat release from in-cylinder pressure measurements, effectively using a single zone approach with constant properties determined at some average temperature. In this paper, we follow an approach consistent with the engine modeling approach (i.e., reverse modeling) to extract heat release rate from combustion pressure data. The experimental data used here solely consists of quantities measured in a typical engine dynamometer tests, namely the crank-angle resolved cylinder pressure, as well as global measurements of the A/F ratio, engine speed, load, EGR, air mass flow rate and temperature and exhaust emissions. We then perform a two-zone, crank-angle resolved analysis of the pressure data using variable composition and properties.
Journal Article

Vehicle Coast Analysis: Typical SUV Characteristics

2008-04-14
2008-01-0598
Typical factors that contribute to the coast down characteristics of a vehicle include aerodynamic drag, gravitational forces due to slope, pumping losses within the engine, frictional losses throughout the powertrain, and tire rolling resistance. When summed together, these reactions yield predictable deceleration values that can be related to vehicle speeds. This paper focuses on vehicle decelerations while coasting with a typical medium-sized SUV. Drag factors can be classified into two categories: (1) those that are caused by environmental factors (wind and slope) and (2) those that are caused by the vehicle (powertrain losses, rolling resistance, and drag into stationary air). The purpose of this paper is to provide data that will help engineers understand and model vehicle response after loss of engine power.
Journal Article

Vibration Analysis of Powertrain Mounting System with a Combination of Active and Passive Isolators with Spectrally-varying Properties

2009-05-19
2009-01-2034
Most of the prior work on active mounting systems has been conducted in the context of a single degree-of-freedom even though the vehicle powertrain is a six degree-of-freedom isolation system. We seek to overcome this deficiency by proposing a new six degree-of-freedom analytical model of the powertrain system with a combination of active and passive mounts. All stiffness and damping elements contain spectrally-varying properties and we examine powertrain motions when excited by an oscillating torque. Two methods are developed that describe the mount elements via a transfer function (in Laplace domain). New analytical formulations are verified by comparing the frequency responses with numerical results obtained by the direct inversion method (based on Voigt type mount model). Eigensolutions of a spectrally varying mounting system are also predicted by new models.
Technical Paper

Vibration Power Transmission Through Multi-Dimensional Isolation Paths Over High Frequencies

2001-04-30
2001-01-1452
In many vibration isolation problems, translational motion has been regarded as a major contributor to the energy transmitted from a source to a receiver. However, the rotational components of isolation paths must be incorporated as the frequency range of interest increases. This article focuses on the flexural motion of an elastomeric isolator but the longitudinal motion is also considered. In this study, the isolator is modeled using the Timoshenko beam theory (flexural motion) and the wave equation (longitudinal motion), and linear, time-invariant system assumption is made throughout this study. Two different frequency response characteristics of an elastomeric isolator are predicted by the Timoshenko beam theory and are compared with its subsets. A rigid body is employed for the source and the receiver is modeled using two alternate formulations: an infinite beam and then a finite beam. Power transmission efficiency concept is employed to quantify the isolation achieved.
Technical Paper

Vibro-Acoustic Effects of Friction in Gears: An Experimental Investigation

2001-04-30
2001-01-1516
Amongst various sources of noise and vibrations in gear meshing, transmission error and sliding friction between the teeth are two major constituents. As the operating conditions are altered, the magnitude of these two excitations is affected differently and either of them can become the dominant factor. In this article, an experimental investigation is presented for identifying the friction excitation and to study the influence of tribological parameters on the radiated sound. Since both friction and transmission error excitations occur at the same fundamental period of one meshing cycle, they result in similar spectral contents in the dynamic response. Hence specific methods like the variation of parameters are designed in order to distinguish between the individual vibration and noise sources. The two main tribological parameters that are varied are the lubricant and the surface finish characteristics of gear teeth.
Technical Paper

Virtual GDI Engine as a Tool for Model-Based Calibration

2012-09-10
2012-01-1679
Recent and forthcoming fuel consumption reduction requirements and exhaust emissions regulations are forcing the development of innovative and particularly complex intake-engine-exhaust layouts. In the case of Spark Ignition (SI) engines, the necessity to further reduce fuel consumption has led to the adoption of direct injection systems, displacement downsizing, and challenging intake-exhaust configurations, such as multi-stage turbocharging or turbo-assist solutions. Further, the most recent turbo-GDI engines may be equipped with other fuel-reduction oriented technologies, such as Variable Valve Timing (VVT) systems, devices for actively control tumble/swirl in-cylinder flow components, and Exhaust Gas Recirculation (EGR) systems. Such degree of flexibility has a main drawback: the exponentially increasing effort required for optimal engine control calibration.
Technical Paper

Water Injection Applicability to Gasoline Engines: Thermodynamic Analysis

2019-04-02
2019-01-0266
The vehicle WLTP and RDE homologation test cycles are pushing the engine technology toward the implementation of different solutions aimed to the exhaust gases emission reduction. The tightening of the policy on the Auxiliary Emission Strategy (A.E.S.), including those for the engine component protection, faces the Spark Ignited (S.I.) engines with the need to replace the fuel enrichment as a means to cool down both unburnt mixture and exhaust gases to accomplish with the inlet temperature turbine (TiT) limit. Among the whole technology solutions conceived to make SI engine operating at lambda 1.0 on the whole operation map, the water injection is one of the valuable candidates. Despite the fact that the water injection has been exploited in the past, the renewed interest in it requires a deep investigation in order to outcome its potential as well as its limits.
Technical Paper

Well-to Wheel Greenhouse Gas Emissions of LNG Used as a Fuel for Long Haul Trucks in a European Scenario

2013-09-08
2013-24-0110
The EU Commission's “Clean Power for Transport” initiative aims to break the EU's dependence on imported oil whilst promoting the use of alternative fuels to reduce greenhouse gas emissions. Among the options considered is the use of liquefied natural gas (LNG) as a substitute for diesel in long haul trucks. It is interesting to ask how the lifecycle greenhouse gas (GHG) emissions of LNG compare with conventional diesel fuel for this application. The LNG available in Europe is mainly imported. This paper considers the “well-to-tank” emissions of LNG from various production routes, including: gas production, treatment and liquefaction, shipping to Europe, terminal, distribution and refuelling operations. “Tank-to-Wheel” emissions are considered for a range of currently-available engine technologies of varying efficiency relative to diesel.
Journal Article

Zero-Dimensional Modeling of Combustion and Heat Release Rate in DI Diesel Engines

2012-04-16
2012-01-1065
Zero-dimensional heat release rate models have the advantage of being both easy to handle and computationally efficient. In addition, they are capable of predicting the effects of important engine parameters on the combustion process. In this study, a zero-dimensional combustion model based on physical and chemical sub-models for local processes like injection, spray formation, ignition and combustion is presented. In terms of injection simulation, the presented model accounts for a phenomenological nozzle flow model considering the nozzle passage inlet configuration and an approach for modeling the characteristics of the Diesel spray and consequently the mixing process. A formulation for modeling the effects of intake swirl flow pattern, squish flow and injection characteristics on the in-cylinder turbulent kinetic energy is presented and compared with the CFD simulation results.
X